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The internal
constitution of
the stars

Arthur S. Eddington

At first sight it would seem that the deep interior of the
sun and stars is less accessible to scientific investigation
than any other region of the universe. Our telescopes
may probe farther and farther into the depths of space;
but how can we ever obtain certain knowledge of that
which is hidden behind substantial barriers? What
appliance can pierce through the outer layers of a star
and test the conditions within?

- Arthur S. Eddington

Outlines

* Preparation: some basics

* Helioseismology: new eyes to see the invisible solar
interior

* Some Topics of Asteroseismology
* Internal Rotation of Stars
* Finding Binaries through Asteroseismology

* Super-Nyquist asteroseismology
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Keplerian revolution

@ Almost continuous observations over 4 years

@ Observations from Space
no atmospheric scintillation

no day-night gaps

Q Extremely high precision; AL/L ~ 10

I. Fundamentals

of Stellar Physics
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Observational Facts

Characteristic quantities

0 Size Rsun =7108m

O Mass Msun =2103%kg

0 Luminosity Lsun =410 W

0 Dyn timescale Tayn= (GM/R?)2 ~1 hr
0 Therm timescale txka= GM?/(RL) ~107 yr

Light from a star

Thermal radiation from a body with T

_ 2mhc? 1
B)‘(T) = 7;5(: exp(hc/AkT)—1

* Temperature determines spectrum

* Colour indicates temperature

AmaxT=2.9 10*m K
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Effective Temperature vs Luminosity
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Determination of Stellar Mass
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Theoretical consideration

Why are stars shining?

Continuity

Gravity = gdm
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Energy transfe

absorbed p eritum = Fxdm/c

absorbed radiation energy = Fudm

Energy transfe Pra=aT%/3

absorbed p eritum = Fudm/c

radiation pressure = -4mtr2(d Prag/dm)dm

Radiative ec
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Equilibrium state
dr/dm = 1/(4mtr2Q)
dp/dm = - Gmg/(4mr?)

dT/dm = - 3xL,/(64m2acriT3)

Rough estimate:
Differential Eq. --> Difference Eq.
LHS: Difference between Surface and Center
RHS: Averaged values

Rough estimate:
Differential Eq. --> Difference Eq.
LHS: Difference between Surface and Center
RHS: Averaged values

dr/dm = 1/(4mr2Q)

LHS = R'M
RHS = (4m)"A(R/2)%(Q/2)

-Qc = (2/m)(M/R3)

Rough estimate:
Differential Eq. --> Difference Eq.
LHS: Difference between Surface and Center
RHS: Averaged values

dp/dm = - Gm/(4mr)

LHS = -p./M
RHS = -G/(4m) (M/2)(R[2)*

. pe= Q/m)(GM?/RY)
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The central temperature

Ideal gas
p=nkT JTe=(kf pmu)'l GM/R
= (o/umy)kT

=107 K for Msun Rsun

n : particle numbers

1 : mean molecular weight

k = Boltzmann constant (1.38 102 J/K)
my = atomic weight (1.66 102 kg)

Rough estimate:
Differential Eq. --> Difference Eq.
LHS: Difference between Surface and Center
RHS: Averaged values

dT/dm = - 3xL,/(64m2acT?r)

LHS = -T/M
RHS = -3<k> (L/2)/(64m%ac) (T¢/2)3 (R/2)4

- L =m?/(3<k>) {acG*(k[my)*} pt M3

Mass-Luminosity relation
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Radiation from a Star

Stefan-Boltzmann law:

Radiation energy flux is proportional to T*

L= AJ‘BAd)\ =A OTettt

A = surface area (m? = 4ntR?  (R: stellar radius)

Main Sequence

L = m?/(3<1c>) {acGH(k/m)HpMB o

Normalizing with the solar values,

<k>L/(<k>L)sun = (M/Msun)?

luminesity

Since 0Tes* = L/(4TR?),
(Teff/Teff,sun)4 = (L/Lsun) (Ia/lzsun)-Z
= (L/Lsun) (M/Mgun)2
(L/Lsun)'?

] e ot
L/Lsun o (Teff/Tefflsun)lz < surface temperature

L

Why are stars shining?

Nuclear fusion?

No!

Lecture.01 - 2016E7H22H



Why are stars shining?

© Self gravity is supported by pressure.

~ High gaseous pressure needs high
temperature.

© Central temperature reaches 10”7 K.

© Energy flows from hot to cool regions.

Why are stars shining?
Simply because stars are hot !

Energy flows from hot to cool region.

Stellar Evolution
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Star: Energy losing system

Energy loss = Cooling

Cooling timescale =fchdm/L
=107 yr for the Sun !

Lifetime o« M/L « M-

Necessity for sustaining mechanism

Nuclear fusion?

That’s it!

Why can stars shine so long ?

Assume
mass = energy 1. Solar composition: pure H
2.10% of H converted to He

A
A @ Enue = 0.007 (0.1Msun)c?
8 =13104]

tauc = Enuctear / Lsun
H atomic weight 1.008 = 1010 yr

He atomic weight 4.002

{4m(H) - m(He)}/4 = 0.007
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Nuclear reactions

r = NaN.<ov>

<>
Maxwell-Boltzmann distribution for v

<ov>= [° "’(v)"’(2,"%%)3/2e_E/kT47"P2 dp

\/

<ov>= [° 2Z; WU(E)Ee_E/’“T dE

i
my/

Cross section

Geometrical factor o = A2 = wh?/(2m,E)

Penetration factor P = exp(-27t2min/A)
« exp(-BE1?)
Nuclear factor S(E)

== o(E) = Elexp(-BE-12) S(E)
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Nuclear reactions

o (_5_)1/2 ()% [ S(B) exp (— £ — BE-1/2) dE

Tm,, kT

Maxwell-Botzmann
o
A £

Frogu (ragrTea)

Gamow peak : T=10"K
=T,

Is this a coincidence?

No! Stellar radius is adjusted so that
R = (k/}lmu)-l GM/TC
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Stellar evolution

He fusion
(He = ©C)

( sizes not to scale! )

Helium core /
' Hydrogen shell fusion

Hydrogen core fusion [Po—

Q-
(H=He)

Thomas Kallinger, University of British Columbia and University of Vienna

Luminosity (Solar unit)

Stellar Evolution
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Hydrogen

Four hydrogen nuclei (4'H) are converted to a helium

nucleus (*He)

atomic weight of H = 1.008, so 4.032 by 4'H
atomic weight of He = 4.002

Hence, liberated energy per nucleus is proportional to
(4.032 - 4.002)/4

Helium

Three helium nuclei (3*He) are converted to a nucleus of

carbon (12C)

Atomic weight of He = 4.002, so 12.006 by 3‘He
Atomic weight of C =12.000

Hence, liberated energy per nucleus is proportional to
(12.006 - 12.000)/12

Lifetime of He burning will be shorter than that of H
burning by a factor of
[(12.006 - 12.000)/12] / [(4.032 - 4.002)/4]

Essence of stellar evolution

0 Toward gravitational contraction
o However, its timescale is not GM?/RL
0 Residence by nuclear reactions

0 Timescales are governed by nuclear
reactions
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End of Lecture I
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